[PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision

60
VIEWS
[PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision new
[PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision
Save this Notes (PDF)
Please login to bookmark Close
Save this Notes (PDF)
Please login to bookmark Close
TitleDetails
Shared ByEE Networks
UniversityCommon for All, Other
CourseCivil Engineering
SubjectCivil Engineering Formulas Collection
TypeFormulas Collection
Category, ,
Pages09
FormatPDF
LanguageEnglish
Excerpts

Preparing for competitive exams in civil engineering can be a daunting task due to the extensive syllabus covering multiple topics. Competitive exams like GATE, ESE, SSC JE, RRB JE, and....

Preparing for competitive exams in civil engineering can be a daunting task due to the extensive syllabus covering multiple topics. Competitive exams like GATE, ESE, SSC JE, RRB JE, and others require not only an in-depth understanding of various subjects but also quick recall of critical formulas. To make your preparation easier and more efficient, this PDF collection compiles essential formulas across all key subjects in civil engineering, providing you with a streamlined, quick-reference tool for last-minute revision.

In this PDF, we cover the most crucial formulas from core subjects such as Structural Analysis, Geotechnical Engineering, Fluid Mechanics, Strength of Materials, Environmental Engineering, Transportation Engineering, Surveying, Engineering Mathematics & etc. Each formula is organized by subject, making it easier to quickly understand its context and application.

This formula collection serves as a comprehensive yet concise resource, helping you reinforce critical knowledge quickly. Make sure to regularly review and understand the application of each formula, as many competitive exams test practical understanding and application as much as theoretical knowledge. By keeping these formulas handy, you can enhance your efficiency, accuracy, and confidence in solving technical questions in competitive exams.

Mathematics

1. If 𝑟 ≠ 𝑟′, no solution, if 𝑟 = 𝑟′ = 𝑛, unique solution if 𝑟 = 𝑟′ <
𝑛, many solutions. (non-homogeneous)
2. If 𝑟 = 𝑛, trivial solution, if 𝑟 < 𝑛 ,then (𝑛 − 𝑟) linearly independent solutions. (Many solutions) and if 𝑚 < 𝑛, then many solutions. 25. 𝐿(𝑒𝑎𝑡) = 1 𝑠−𝑎 26. 𝐿(sin 𝑎𝑡) = 𝑎 𝑠2+𝑎2 27. 𝐿(cos 𝑎𝑡) = 𝑠 𝑠2+𝑎2 28. 𝐿(sinh 𝑎𝑡) = 𝑎 𝑠2−𝑎2 29. 𝐿(cosh 𝑎𝑡) = 𝑠 𝑠2−𝑎2 3. 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) + ℎ 𝑓′′(𝑥) + 2! ℎ 𝑓 3! ′′′ (𝑥) + … … … ∞ 30. 𝐿{𝑒𝑎𝑡𝑓(𝑡)} = 𝑓̅(𝑠 − 𝑎) ∫𝑇 𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 4. If 𝑟𝑡 − 𝑠2 > 0 and 𝑟 < 0 𝑓(𝑥, 𝑦) have maximum, if 𝑟𝑡 − 𝑠2 >

31. 𝑓(𝑡 + 𝑇) = 𝑓(𝑡) then 𝐿{𝑓(𝑡)} = 0
1−𝑒−𝑠𝑇

0 and 𝑟 > 0 𝑓(𝑥, 𝑦) have minimum at(𝑎, 𝑏) and if 𝑟𝑡 − 𝑠2 < 0, then saddle point. If 𝑟𝑡 − 𝑠2 = 0, 𝑓𝑢𝑟𝑡ℎ𝑒𝑟 investigation is required to decide. 5. ∫ (∅𝑑𝑥 + 𝜓𝑑𝑦) = ∫ ∫ (𝜕𝜓 − 𝜕∅) 𝑑𝑥𝑑𝑦 (Green’s) 32. 𝐿{𝑓′(𝑡)} = 𝑠𝑓(̅ 𝑠) − 𝑓(0) 33. 𝐿{𝑓𝑛(𝑡)} = 𝑠𝑛𝑓(̅ 𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − ⋯ … … . . 𝑓𝑛−1(0) 34. 𝐿{ 𝑡 𝑓(𝑥)𝑑𝑥} = 1 𝑓̅(𝑠) 0 𝑆 𝑑𝑛 𝑐 𝐸 𝜕𝑥 𝜕𝑦 35. 𝐿{𝑡𝑛𝑓(𝑡)} = (−1)𝑛 . [𝑓̅(s)] 𝑑𝑠𝑛 6. ∫𝑐𝑭. 𝑑ℝ=∫𝑆𝑐𝑢𝑟𝑙𝑭. 𝑁𝑑𝑠 (Stokes) 7. ∫ 𝑭. 𝑁𝑑𝑠 = ∫ 𝑑𝑖𝑣𝑭𝑑𝑣 (Gauss) 36. 𝐿 {1 𝑓(𝑡)} = 𝑡 ∞ 𝑓̅(s) 𝑑𝑠 𝑆 𝑆 𝐸 37. 𝑓(𝑥) = 𝑎0 + ∑∞ 𝑎 cos 𝑛𝑥 + ∑∞ 𝑏 sin 𝑛𝑥 8. 𝑦𝑒∫ 𝑃𝑑𝑥 = ∫ 𝑄 𝑒∫ 𝑃𝑑𝑥𝑑𝑥 + 𝑐 2 𝑛=1 𝑛 𝑛=1 𝑛 38. 𝑎 = 1 𝛼+2𝜋 𝑓(𝑥)𝑑𝑥, 𝑎 = 1 𝛼+2𝜋 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥, 𝑏 = 9. If 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0 be a homogeneous equation in 𝑥 and 𝑦, then 0 𝜋 ∫𝛼 𝑛 𝜋 ∫𝛼 𝑛 1 𝑖𝑠 an integrating factor 1 𝛼+2𝜋 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥 𝑀 𝑥+𝑁 𝑦 10. If the equation of the type 𝑓 (𝑥𝑦)𝑦 𝑑𝑥 + 𝑓 (𝑥𝑦)𝑥 𝑑𝑦 = 0. If the 𝜋 ∫𝛼 39. 𝑓(𝑥) = 𝑎0 + ∑∞ 𝑎 cos 𝑛𝜋𝑥 + ∑∞ 𝑏 sin 𝑛𝜋𝑥 1 2 2 𝑛=1 𝑛 𝑐 𝑛=1 𝑛 𝑐 equation 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0 be of this type then 1 is an 40. 𝑎 = 1 𝛼+2𝑐 𝑓(𝑥)𝑑𝑥, 𝑎 = 1 𝛼+2𝑐 𝑓(𝑥) cos 𝑛𝜋𝑥 𝑑𝑥, 𝑏 = integrating factor 𝑀 𝑥−𝑁 𝑦 0 𝑐 ∫𝛼 𝑛 1 𝛼+2𝑐 𝑓(𝑥) sin 𝑛𝜋𝑥 𝑑𝑥 𝑐 ∫𝛼 𝑐 𝑛 11. If 𝜕𝑀 𝜕𝑁 𝜕𝑦 −𝜕𝑥 be a function of x only = 𝑓(𝑥) say then 𝑒∫ 𝑓(𝑥)𝑑𝑥 is an 𝑐 ∫𝛼 41. 𝑓(𝑥) = ∑∞ 𝑐 𝑏 sin 𝑛𝜋𝑥 , where 𝑏 = 2 𝑐 𝑓(𝑥) sin 𝑛𝜋𝑥 𝑑𝑥 𝑁 𝑛=1 𝑛 𝑐 𝑛 𝑐 ∫0 𝑐 integrating factor 42. 𝑓(𝑥) = 𝑎0 + ∑∞ 𝑎 cos 𝑛𝜋𝑥 where, 𝑎 = 2 𝑐 𝑓(𝑥)𝑑𝑥, 2 𝑛=1 𝑛 𝑐 0 𝑐 ∫0 𝑎 = 2 𝑐 𝑓(𝑥) cos 𝑛𝜋𝑥 𝑑𝑥 𝜕𝑁 𝜕𝑀 12. If 𝜕𝑥− 𝜕𝑦 be a function of y only = 𝑓(𝑦) say then 𝑒∫ 𝑓(𝑦)𝑑𝑦 is an 𝑛 𝑐 ∫0 𝑐 ∞ ( ) 𝑀 43. 𝜇 = ∑𝑗 𝑥𝑗𝑓(𝑥𝑗) 𝑎𝑛𝑑 𝜇 = ∫−∞ 𝑥 𝑓 𝑥 𝑑𝑥 integrating factor. 44. 𝜎2 = ∑ ( 2 𝑎𝑛𝑑 𝜎2 = ∞ (𝑥 − 𝜇)2 𝑓(𝑥)𝑑𝑥 𝑗 𝑥𝑗 − 𝜇) 𝑓(𝑥𝑗) ∫−∞ 13. ∫𝑦=𝑐𝑜𝑛𝑡 𝑀𝑑𝑥 + ∫ terms of N not containing x dy = c 45. 𝑀𝑒𝑎𝑛: 𝑛𝑝 = 𝜇 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2 = 𝜇 (Poisson’s 14. 𝑃. 𝐼. = 1 𝑓(𝐷) 𝑒𝑎𝑥 = 1 𝑓(𝑎) 𝑒𝑎𝑥 , 𝑓(𝑎) ≠ 0, if 𝑓(𝑎) = 0, 𝑡ℎ𝑒𝑛 𝑃. 𝐼. = distribution) 1 1 𝑥−𝜇 2 𝑥 1 𝑓𝘍(𝑎) 𝑒𝑎𝑥, 𝑓′(𝑎) ≠ 0 46. 𝑓(𝑥) = 𝜎√2𝜋 𝑒− 2( 𝜎 ) (Normal distribution) 1 ( ) 1 ( 2) 47. 𝑦 = 𝑎 + 𝑏𝑥, ∑ 𝑦 = 𝑛𝑎 + 𝑏 ∑ 𝑥, ∑ 𝑥𝑦 = 𝑎 ∑ 𝑥 + 𝑏 ∑ 𝑥2 15. 𝑃. 𝐼 = 𝑓(𝐷2) sin 𝑎𝑥 + 𝑏 𝑓(−𝑎2) = 0, = 𝑓(−𝑎2) , 𝑓 −𝑎 ≠ 0, if 48. 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2, ∑ 𝑦 = 𝑛𝑎 + 𝑏. ∑ 𝑥 + 𝑐. ∑ 𝑥2, ∑ 𝑥𝑦 = 𝑎 ∑ 𝑥 + 𝑏. ∑ 𝑥2 + 𝑐 ∑ 𝑥3, ∑ 𝑥2𝑦 = 𝑎 ∑ 𝑥2 + 𝑏. ∑ 𝑥3 + 𝑐 ∑ 𝑥4 then 𝑃. 𝐼. = 𝑥 1 sin(𝑎𝑥 + 𝑏), 𝑓′(−𝑎2) ≠ 0 (𝑥−𝑥 )(𝑥−𝑥 )…(𝑥−𝑥 ) (𝑥−𝑥 )(𝑥−𝑥 )…(𝑥−𝑥 ) 𝑓𝘍(−𝑎2) 49. 𝑦 = 𝑓(𝑥) = 1 2 𝑛 𝑦0 + 0 2 𝑛 𝑦1 + 16. 𝑃. 𝐼. = 1 𝑒 𝑎𝑥 𝑉 = 𝑒 𝑎𝑥 1 𝑉 (𝑥0−𝑥1)(𝑥0−𝑥2)…(𝑥0−𝑥𝑛) (𝑥−𝑥1)(𝑥−𝑥2)…(𝑥−𝑥𝑛−1) (𝑥1−𝑥0)(𝑥1−𝑥2)…(𝑥1−𝑥𝑛) 𝑓(𝐷) 𝑓(𝐷+𝑎) ⋯ + (𝑥 −𝑥 )(𝑥 −𝑥 )…(𝑥 −𝑥 ) 𝑦𝑛 17. 𝑃. 𝐼 = 1 𝑥𝑚 = [𝑓(𝐷)]−1𝑥𝑚, 𝑛 0 𝑛 1 𝑛 𝑛−1 𝑓(𝐷) 50. (𝑑𝑦) = 1 [∆𝑦 − 1 ∆2𝑦 + 1 ∆3𝑦 − 1 ∆4𝑦 + ⋯ ] 18. (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 − ⋯ 𝑑𝑥 𝑥0 ℎ 2 3 0 4 0 19. (1 − 𝑥)−1 = 1 + 𝑥 + 𝑥2 + ⋯ 51. (𝑑𝑦) = 1 [∇𝑦 + 1 ∇2𝑦 + 1 ∇3𝑦 + 1 ∇4𝑦 + ⋯ ] 𝑑𝑛𝑦 𝑑𝑛−1𝑦 𝑑𝑦 𝑑𝑥 𝑥𝑛 ℎ 𝑛 2 𝑛 3 𝑛 4 𝑛 20. 𝑥𝑛 + 𝑘1𝑥𝑛−1 + ⋯ 𝑘𝑛−1𝑥 + 𝑘𝑛𝑦 = 𝑋, 𝑥 = 𝑒𝑡 , 𝑓(𝑥𝑛) 𝑑𝑥𝑛 𝑑𝑦 𝑑𝑥𝑛−1 2 𝑑2𝑦 𝑑𝑥 3 𝑑3𝑦 52. 𝑥𝑛+1 = 𝑥𝑛 − 𝑓𝘍(𝑥 ) (Newton-Raphson) 𝑥 = 𝐷𝑦, 𝑥 2 = 𝐷(𝐷 − 1)𝑦, 𝑥 3 = D(D − 1)(D − 2) 53. 𝑥0+𝑛ℎ 𝑓(𝑥)𝑑𝑥 = ℎ [𝑦 + 𝑦 + 2(𝑦 + 𝑦 + ⋯ . . +𝑦 )] 𝑑𝑥 𝑑𝑥 𝑑𝑥 ∫𝑥0 2 0 𝑛 1 2 𝑛−1 21. 𝜕 ( 𝑔(𝑥) ℎ(𝑡, 𝑥)𝑑𝑡) = 𝑔(𝑥) 𝜕 ℎ(𝑡, 𝑥)𝑑𝑡 + 𝑑𝑔 ℎ[𝑔(𝑥), 𝑥] − 𝜕𝑥 𝑑𝑓 ∫𝑓(𝑥) ∫𝑓(𝑥) 𝜕𝑥 𝑑𝑥 54. (Trapezoidal) 𝑥0+𝑛ℎ 𝑓(𝑥)𝑑𝑥 = ℎ [(𝑦 + 𝑦 ) + 4(𝑦 + 𝑦 + ⋯ 𝑦 ) + 2(𝑦 + ℎ[𝑓(𝑥), 𝑥] 𝑑𝑥 ∫𝑥0 3 0 𝑛 1 3 𝑛−1 2 22. 𝐿{𝑓(𝑡)} = 23. 𝐿(1) = 1 ∞ 𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 0 𝑦4 + ⋯ 𝑦𝑛−2)] (Simpson’s) 55. 𝐸𝑟𝑟𝑜𝑟 = − 𝑏−𝑎 ℎ2 𝑓′′(𝜉) = 𝑂(ℎ2) (Trapezoidal) 12 𝑠 24. 𝐿(𝑡𝑛) = 𝑛! 𝑠𝑛+1 56. 𝐸𝑟𝑟𝑜𝑟 = − 𝑏−𝑎 180 ℎ4𝑓 𝑖𝑣 (𝜉) = 𝑂(ℎ4) (Simpson’s) 57. 𝑦 = 𝑦 + ℎ. 𝑓(𝑡 , 𝑦 ) where 𝑑𝑦 = 𝑓(𝑡, 𝑦) (Euler’s) 𝑘+1 𝑘 𝑘 𝑘 𝑑𝑥 Strength of material 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 1. = 12. 𝜎 = 3𝑤𝑙 and 𝛿 = 𝜎𝑙2 (Leaf spring) 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 2. 𝑒 = 𝑓𝑥 −𝜇 𝑓𝑦 − 𝜇 𝑓𝑧 2𝑛𝑏𝑡2 13. 𝛿 = 64𝑊𝑅3𝑛 4𝐸𝑡 (Helical spring) 𝑥 𝐸 𝐸 𝐸 𝐺𝑑4 𝑓𝑦 𝑓𝑥 𝑓𝑧 3. 𝑒 = − 𝜇 − 𝜇 𝜎𝑥+𝜎𝑦 𝜎𝑥−𝜎𝑦 14. 𝜎 = + cos 2𝜃 + 𝑟 sin 2𝜃 𝑦 𝐸 𝐸 𝐸 𝑛 2 2 4. 𝑒 = 𝑓𝑧 − 𝜇 𝑓𝑥 − 𝜇 𝑓𝑦 15. 𝑟 = − (𝜎𝑥−𝜎𝑦) sin 2𝜃 + 𝑟 cos 2𝜃 𝑧 𝐸 𝐸 𝐸 𝑡 2 5. 𝐺 = 𝜎 +𝜎 𝜎 −𝜎 2 2(1+𝜇) 16. 𝜎 = 𝑥 𝑦 + √( 𝑥 𝑦) + 𝑟2 6. 𝐾 = 3(1−2𝜇) 1 2 𝜎 +𝜎 2 𝜎 −𝜎 2 𝑀 𝑓 𝐸 17. 𝜎 = 𝑥 𝑦 − √( 𝑥 𝑦) + 𝑟2 7. = = 𝐼 𝑦 𝑅 3 2 2 𝜋2𝐸𝐼 𝜋2𝐸𝐼 8. 𝑟 = 18. 𝑃 = (hinged and hinged)) ,𝑃 = 𝑙2 4𝑙2 (fixed and free) Ib 𝑇 𝑐 𝐺𝜃 9. 19. 𝑃 = 4𝜋2𝐸𝐼 (Fixed and fixed) ,𝑃 = 𝑙2 2𝜋2𝐸𝐼 𝑙2 𝐽 𝑟 𝐿 𝜎𝑐.𝐴 𝜎𝑐 10. 𝑀 = 1 [𝑀 + √𝑀2 + 𝑇2] 20. 𝑃 = 𝑙𝑒 2 where 𝛼 = 𝜋2𝐸 is Rankine’s constant 𝑒 2 1+𝛼(𝐾) 11. 𝑇𝑒 = √𝑀2 + 𝑇2 Structural analysis 1. 𝑀̅ = − 𝑃𝑎𝑏2 and 𝑀̅ = 𝑃𝑎2𝑏 (Point load) 9. 𝑀 = 𝑀̅ + 2𝐸𝐼 (2𝜃 + 𝜃 − 3∆) , right support sinks by ∆ 𝐴𝐵 𝑙2 𝐴𝐵 𝑙2 𝐴𝐵 𝐴𝐵 𝐿 𝐴 𝐵 𝐿 2. 𝑀̅ = − 𝑤𝑙2 and 𝑀̅ = 𝑤𝑙2 (udl) 10. 𝑀 = 𝑀̅ + 2𝐸𝐼 (2𝜃 + 𝜃 − 3∆), right support sinks by ∆ 𝐴𝐵 12 𝐴𝐵 12 𝐵𝐴 𝐵𝐴 𝐿 𝐵 𝐴 𝐿 ̅ 𝑤𝑙2 ̅ 𝑤𝑙2 11. 𝑀 𝑙 + 2𝑀 (𝑙 + 𝑙 ) + 𝑀 𝑙 = − 6𝑎1𝑥1 − 6𝑎2𝑥2 3. 𝑀𝐴𝐵 = − 30 and 𝑀𝐴𝐵 = 20 (uvl from left to right increase) 𝐴 1 𝐵 1 2 𝐶 2 𝑙1 𝑙2 4. 𝑀̅ = 𝑀𝑏 (3𝑎 − 𝑙) and 𝑀̅ = 𝑀𝑎 (3𝑏 − 𝑙) (clockwise moment) 12. 𝛿 = ∑ 𝑃𝑘𝐿 𝐴𝐵 𝑙2 𝑃2𝐿 𝐿 𝑀2 𝐴𝐵 𝑙2 𝑇2𝐿 𝐴𝐸 ∑𝑃𝑘𝐿 ∑(𝑃𝐿+𝐿𝛼𝑡)𝑘 5. 𝑈 = 2𝐴𝐸 , 𝑈 = ∫0 2𝐸𝐼 𝐿 𝑉2 𝑑𝑥 and 𝑈 = 2𝐺𝐽 13. 𝑄 = − 𝐴𝐸 ∑𝑘2𝐿 𝐿0 𝐴𝐸 𝐴0𝐸0 and 𝑄 = − 𝐴𝐸 ∑𝑘2𝐿 𝐿0 𝐴𝐸 𝐴0𝐸0 6. 𝑈 = 1.2 ∫0 2𝐺𝐴 𝑑𝑥 (rectangular beam) ∫𝑙𝑀𝑠𝑦 𝑑𝑥+𝖺𝑡𝑙−𝛿 14. 𝑘𝑖𝑗 = 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑖 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑗, 0 𝐸𝐼 𝑙𝑦2𝑑𝑥 ∫0 𝐸𝐼 𝑤𝑙2 (two hinged arch) 8 𝑑2 𝛿𝑖𝑗 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑖 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑗 15. Far end fixed, Transverse displacement, 𝛿 = 𝐿 12𝐸𝐼 and 𝑘 = 12𝐸𝐼 𝐿3 8. H= (cable with udl) and Length of cable 𝐿 = 𝑙 + 8𝑑 3 𝑙 16. Far end hinged, Transverse displacement, 𝛿 = 𝐿3 and 𝑘 = 3𝐸𝐼 RCC 3𝐸𝐼 𝐿3 1. 𝑓𝑚 = 𝑓𝑐𝑘 + 1.65 𝜎 2. 𝐸𝑐 = 5000 √𝑓𝑐𝑘 and 𝑓𝑐𝑟 = 0.7 √𝑓𝑐𝑘 21. (𝑙 ) =7 for cantilever, 20 for SS and 26 for continuous beams. 𝑑 𝑏𝑎𝑠𝑖𝑐 If span is more than 10 m, multiply above values with 10/span for 3. 𝜀𝑠𝑡 = 0.002 + 0.87 𝑓𝑦 𝐸𝑠 SS and continuous beams. 4. 𝐸 = 2 × 105 𝑀𝑃𝑎 , 𝑚 = 280 22. 𝐿 = 𝑓𝑠∅ , multiply 𝑟 value with 1.6 for deformed bars and 1.25 𝑠 3𝜎𝑐𝑏𝑐 𝑑 4𝑐𝑏𝑑 𝑏𝑑 5. 𝑏 = 𝑙0 + 𝑏 + 6𝐷 for T-beams. for bars in compression. 𝑓 6 𝑤 𝑓 𝑀𝑢 𝑀𝑢 6. 𝑏 = 𝑙0 + 𝑏 + 3𝐷 for L-beams. 23. + 𝐿0 ≥ 𝐿𝑑 and 1.3 𝑉 𝑉 + 𝐿0 ≥ 𝐿𝑑 (If confinement exists) 𝑓 12 𝑤 𝑓 𝑙0 𝑢 24. 𝑟 = 𝑉𝑢 , 𝑉 𝑢 = 𝑉 + 𝑀 tan 𝛽 7. 𝑙0 + 𝑏𝑤 ≤ 𝑏 for isolated T-beams. 𝑣 𝑏𝑑 𝑢,𝑛𝑒𝑡 𝑢 𝑑 𝑏 +4 8. 0.5𝑙0 + 𝑏 ≤ 𝑏 for isolated L-beams. 25. 𝑉𝑢𝑠 = 0.87 𝑓𝑦 𝐴𝑠𝑣 𝑑 𝑠𝑣 𝑙0+4 𝑤 𝑏 9. 𝑥𝑢 = 0.87 𝑓𝑦. 𝐴𝑠𝑡 and 𝑥𝑢,𝑚𝑎𝑥 = 0.0035 26. 𝐴𝑠𝑣 ≥ 𝑏 𝑠𝑣 0.4 0.87 𝑓𝑦 (minimum shear reinforcement) 𝑑 0.36 𝑓𝑐𝑘 𝑏𝑑 𝑑 0.87 𝑓𝑦 27. 𝑠 ≤ 0.75 𝑑 𝑎𝑛𝑑 300 𝑚𝑚 for vertical stirrups. 0.0055+ 𝐸𝑠 𝑣 10. 𝑀 = 0.87 𝑓 . 𝐴 (𝑑 − 0.42 𝑥 ) for 𝑥 ≤ 𝑥 28. 𝑉 = 𝑉 + 1.6 𝑇𝑢 and 𝑀 = 𝑀 + 𝑇𝑢 (1 + 𝐷) 𝑢 𝑦 𝑠𝑡 𝑢 𝑢 𝑢,max 𝑒 𝑢 𝑏 𝑒 𝑢 1.7 𝑏 11. 𝑀𝑢 = 0.36 𝑓𝑐𝑘. 𝑏. 𝑥𝑢,𝑚𝑎𝑥(𝑑 − 0.42 𝑥𝑢,𝑚𝑎𝑥) 29. ≤ 35 for ss and 40 for continuous slabs for Fe-250. For Fe-415 12. 𝑥𝑢,𝑚𝑎𝑥 = 0.87 𝑓𝑦 (𝑃𝑡,𝑙𝑖𝑚 ) 𝑑 𝑑 0.36 𝑓𝑐𝑘 100 multiply above values with 0.8 13. 𝑀 = 0.87 𝑓 𝐴 (𝑑 − 𝑓𝑦 𝐴𝑠𝑡) 30. 𝑟 = 𝑘 0.25√𝑓 , 𝑘 = 0.5 + 𝛽 ≤ 1.0 and 𝛽 = 𝑏 𝑢 𝑦 𝑠𝑡 𝑓𝑐𝑘 𝑏 𝑐2 𝑠 𝑐𝑘 𝑠 𝑐 𝑐 𝐷 14. 𝑦𝑓 = 0.15 𝑥𝑢 + 0.65 𝐷𝑓 when 𝐷𝑓 > 0.2
𝑑

31. 𝑒𝑥,𝑚𝑖𝑛

= 𝑙 500

+ 𝑑 , 20 𝑚𝑚 whichever is greater.
30

15. 0.87 𝑓 (𝐴

− 𝐴

) = (𝑓

− 0.447 𝑓

). 𝐴

32. 𝑒

= 𝑙 + 𝑏 , 20 𝑚𝑚 whichever is greater.

𝑦 𝑠𝑡

𝑠𝑡,𝑙

𝑠𝑐

𝑐𝑘

𝑠𝑐

𝑦,𝑚𝑖𝑛

500 30

16. 𝑀𝑢 = 𝑀𝑢,𝑙 + 0.87 𝑓𝑦. (𝐴𝑠𝑡 − 𝐴𝑠𝑡,𝑙) (𝑑 − 𝑑′)

33. 𝑃𝑢 = 0.4 𝑓𝑐𝑘 𝐴𝑐 + 0.67 𝑓𝑦𝐴𝑠𝑐

17. 𝐴𝑠𝑡 = 0.85 (minimum tension reinforcement)

34. 𝑉ℎ ≥ 0.36 (𝐴𝑔 − 1) 𝑓𝑐𝑘 , 𝑑

= 𝑑 − 2𝑐 and 𝑑

= 𝑑 − ∅

𝑏𝑑

𝑓𝑦

𝑉𝑐

𝐴𝑐

𝑓𝑦 𝑐

𝑚 𝑐

18. 𝐴𝑠𝑡,𝑚𝑖𝑛 = 0.12 % of 𝐴𝑔 for 𝐹𝑒-415 and 0.15 % of 𝐴𝑔 for 𝐹𝑒-250. (slabs)

35. 𝐶𝑟
36. 𝑓

= 1.25 − 𝑙𝑒
48𝑏

= 0.45 𝑓

𝐴1 , 1 < 𝐴1 ≤ 2 , 𝐴 =Largest frustum of a 19. 𝐴𝑠𝑡,𝑚𝑎𝑥 = 4% 𝑜𝑓 𝐴𝑔 (Beams) ,𝐴𝑠𝑐,𝑚𝑎𝑥 = 4% 𝑜𝑓 𝐴𝑔 (Beams) 𝑏𝑟,𝑚𝑎𝑥 𝑐𝑘√ 𝐴2 √ 1 𝐴2 20. (𝑙 ) 𝑑 𝑚𝑎𝑥 = (𝑙 ) 𝑑 𝑏𝑎𝑠𝑖𝑐 𝑘𝑡 𝑘𝑐 pyramid with side slopes 1 in 2, 𝐴2 =loaded area of column base Geotechnical Engineering 1. 𝐼𝑓 = 𝑊1−𝑤2 log10 𝑁2/𝑁1 𝐼𝑝 37. ∆𝑢 = 𝐵(∆𝜎𝑐) + 𝐴𝐵 (∆𝜎𝑑) (Skempton’s pore pressure parameters) 2. 𝐼𝑡 = 𝑓 38. 𝑞 = 𝑚𝑃 + 𝑘 is stress path equation where ∅ = tan−1 𝑚 and 𝑐 = 3. 𝐶𝑢 = 𝐷60 𝐷10 𝐷2 𝑘/ cos ∅ 39. 𝐶𝑐 = ∆𝑒 𝜎 +∆𝜎 4. 𝐶𝑐 = 30 𝐷60𝐷10 5. 𝐼𝑃 = 0.73 (𝑤𝐿 − 20) 6. 𝐼𝑃 = 𝑤𝐿 − 𝑤𝑃 log 0 𝜎0 40. 𝐶𝑐 = 0.009 (𝑤𝐿 − 10) (for normally consolidated soil) 41. 𝐶𝑐 = 0.007 (𝑤𝐿 − 10) (for over consolidated soil) 7. 𝐼 = 𝑤 − 𝑤 ∆𝑒 42. = ∆𝐻 𝑠 8. 𝐼𝐿 𝑃 𝑆 = 𝑤−𝑤𝑃 𝐼𝑃 1+𝑒0 43. 𝑚𝑣 = 𝐻 ∆𝐻/𝐻 9. 𝐼 = 𝑤𝐿−𝑤 ∆𝜎0 𝑐 𝐼𝑃 𝐼 44. 𝑐𝑣 = 𝑘 𝛾𝑤𝑚𝑣 10. 𝐴 = 𝑝 𝐹 where 𝐹 is clay fraction (Activity) 45. 𝑇 = 𝑐 𝑣𝑡 𝑒𝑚𝑎𝑥−𝑒 1/𝛾𝑑,𝑚𝑖𝑛−1/𝛾𝑑 𝑑2 11. 𝑅𝐷 = 𝑒 −𝑒 = 1/𝛾 −1/𝛾 46. 𝑇 = 𝜋 𝑈2 when 𝑈 ≤ 0.6 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑑,𝑚𝑖𝑛 𝑑,𝑚𝑎𝑥 𝑣 4 12. 𝑘1 = tan 𝛼1 (non homogeneous) 𝑘2 tan 𝛼2 47. 𝑇𝑣 = −0.933 log10 (1 − 𝑈) − 0.085 when 𝑈 > 0.6

13. 𝑘 = 𝐶 𝛾 𝑒3 𝑑2
𝜇 1+𝑒
𝑘𝜇

48. 𝑆𝑓
49. 𝑆

= 𝐶𝑐𝐻 log
1+𝑒0
= 𝐶𝑟𝐻 log

𝜎0+∆𝜎
𝜎0
𝜎𝑐 + 𝐶𝑐𝐻 log

𝜎0+∆𝜎

14. 𝐾 =

𝛾𝑤

(absolute permeability)

𝑓 1+𝑒0
𝐷2−𝐷2

10 𝜎0

1+𝑒0

10 𝜎𝑐

𝑞 ln(𝑟2/𝑟1)

50. 𝐴𝑟 = 0 𝑖

15. 𝑘 =

2 2 (Permeability in unconfined aquifer)

𝐷2

16. 𝑘 =

𝜋
𝑞 2𝜋𝑏

𝑧2 −𝑧1
ln(𝑟2/𝑟1)
𝑧2−𝑧1

(Permeability in confined aquifer)

𝑖
51. 𝑆 = 𝑐𝑢
𝐹𝛾𝐻

17. 𝑘

= 𝑘1𝐻1+𝑘2𝐻2

(effective horizontal permeability in stratified

52. 𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞 𝑁𝑞 + 0.5 𝛾 𝐵 𝑁𝛾 (Terzaghi’s strip)

ℎ 𝐻1+𝐻2

53. 𝑞 = 1.3 𝑐𝑁 + 𝑞 𝑁 + 0.4 𝛾 𝐵 𝑁

(Terzaghi’s square)

𝑢 𝑐 𝑞 𝛾

soils)
𝐻1+𝐻218. 𝑘 = (effective vertical permeability in stratified soils)

54. 𝑞𝑢 = 1.3 𝑐𝑁𝑐 + 𝑞 𝑁𝑞 + 0.3 𝛾 𝐵 𝑁𝛾 (Terzaghi’s circle)
𝐵 𝐵

𝑘1 +𝑘2
19. 𝑘𝑒 = √𝑘ℎ𝑘𝑣 (effective permeability)

55. 𝑞𝑢 = (1 + 0.3 𝐿) 𝑐𝑁𝑐 + 𝑞 𝑁𝑞 + (1 − 0.2 𝐿) 0.5 𝛾 𝐵 𝑁𝛾 (Terzaghi’s
rectangle)

20. 𝑘 = 𝑎𝐿 ln ℎ1

(falling head permeability test)

56. 𝑞𝑢 = 𝑐𝑁𝑐𝑆𝑐𝑑𝑐𝑖𝑐 + 𝑞 𝑁𝑞𝑆𝑞𝑑𝑞𝑖𝑞 + 0.5 𝛾 𝐵′ 𝑁𝛾 𝑆𝛾𝑑𝛾𝑖𝛾

𝐴𝑡
21. 𝑘 = 𝑞𝐿
𝐴ℎ

ℎ2
(constant head permeability test)

(Meyerhof)
𝐵′ = 𝐵 − 2𝑒𝑥 and 𝐿′ = 𝐿 − 2 𝑒𝑦

22. 𝑞 = 𝑘𝑒

ℎ 𝑁𝑓
𝑁𝑑

(seepage discharge)
5

57. 𝑞𝑛𝑢

= 𝑐𝑁𝑐 (Skempton)
𝐷𝑓 𝐵

3𝑄 1 1 2

𝑁𝑐 = 5 (1 + 0.2 𝐵 ) (1 + 0.2 𝐿)

23. 𝜎𝑧 = 2𝜋 𝑧2 ( 𝑟 2 ) (Boussinesq’s formula)

1+(𝑧)
3

Limiting value of 𝐷𝑓/𝐵 𝑖𝑠 2.5
𝑊ℎ 𝑦ℎ

24. 𝜎 = 𝑐𝑄 1 (
2𝜋 𝑧 2

1 2
𝑟 2 )

where 𝑐 = 1−2𝜇 (Wesrwegaard’s
2−2𝜇

58. 𝑄𝑢 =
𝐶 =

(ENR) where
𝑆+𝐶

formula)

𝑐 +(𝑧)

2.54 𝑐𝑚 𝑓𝑜𝑟 𝑑𝑟𝑜𝑝 ℎ𝑎𝑚𝑚𝑒𝑟 𝑎𝑛𝑑 0.254 𝑐𝑚 𝑓𝑜𝑟 𝑠𝑡𝑒𝑎𝑚 ℎ𝑎𝑚𝑚𝑒𝑟

25. 𝜎𝑧 =

2𝑞 (
𝜋𝑧

2
1
𝑥 2)

(line load)

59. 𝑄𝑢

𝑊ℎ𝑦ℎ𝑦𝑏
𝐶
𝑆+2

(Hiley)

1+(𝑧)

where 𝐶 = 𝐶1 + 𝐶2 + 𝐶3

26. 𝜎

= 𝑞 (2𝜃 + sin 2𝜃) where 𝜃 = tan−1 𝑏

(stress under centre

𝐶 = 9.05 𝑅 with dolley and 𝐶

= 1.77 𝑅 without dolley and

𝑧 𝜋 𝑧

1 𝐴

1 𝐴

of strip load of width 2𝑏 ) 𝑅𝐿

27. 𝜎 = 𝑞 (2𝜃 + sin 2𝜃 sin 2∅) where 2𝜃 = 𝛽 − 𝛽 𝑎𝑛𝑑 2∅ = 𝛽 +

𝐶2 = 0.657 𝐴

𝑧 𝜋

1 2 1
𝑅

𝛽2 ( strip eccentric point)

𝐶3 = 3.55 𝐴

28. 𝜎𝑧

= 𝑞(1 − cos3 𝜃) where 𝜃 = tan−1 𝑅
𝑧

(stress

𝐿 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑖𝑙𝑒 𝑖𝑛 𝑚

under centre of circular load) 𝑅 = 𝑃𝑖𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑡𝑜𝑛𝑛𝑒𝑠 = 0.1𝑄

29. sin ∅ = 𝜎1−𝜎3
𝜎1+𝜎3

(for cohesion less soils)

𝐴 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑖𝑙𝑒 𝑖𝑛 𝑐𝑚2
𝑊+𝑒2𝑃

30. sin ∅ = (𝜎1−𝜎3)/2 (for cohesive soils)

𝜂𝑏 =

when 𝑊 > 𝑃
𝑊+𝑃

𝑐 cot ∅+(𝜎1+𝜎3)/2

𝑊+𝑒2𝑃 𝑊−𝑒𝑃 2

31. 𝜎 = 2𝑐 tan 𝛼 + 𝜎 tan2 𝛼 where 𝛼 = 45 + ∅

𝜂𝑏 =

− ( )
𝑊+𝑃 𝐸+𝑃

when 𝑊 < 𝑃𝑒 1 3 2 32. tan ∅ = 𝑐 𝜎 (shear box test for cohesion less soils) 60. 𝑄𝑢 𝑊ℎ𝑦ℎ 𝑆0 (Danish) 𝑆0 = √2𝑦ℎ𝑊ℎ𝐿 𝐴𝐸 33. 𝑇 = 𝑐 𝜋𝐷2 (𝐻 + 𝐷 ) (if both top and bottom surfaces 61. 𝑄 𝑆+ 2 = 𝐴 𝑐𝑁 + 𝐴 𝛼 𝑐 (clays) 2 6 𝑢 𝑝 𝑐 𝑠 contributes) 34. 𝑇 = 𝑐 𝜋𝐷2 (𝐻 + 𝐷 ) (if only bottom surface contribute) 2 12 1−𝜇2 35. 𝑆𝑖 = 𝑞 𝐵 𝐸 𝐼𝑓 (immediate settlement ) 62. 𝑄𝑢 = 𝐴𝑝𝑐𝑁𝑐 + 𝐴𝑠 𝜆(𝜎̅ + 2𝑐) (clays) 63. 𝑄𝑢 = 𝐴𝑝𝜎̅ 𝑁𝑞 + 𝐴𝑠𝜎̅ 𝑘 tan 𝛿 (sands) 𝜎̅ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑢𝑝𝑡𝑜 15 𝑑 𝑑𝑒𝑝𝑡ℎ 64. 𝑄 = 𝑁(𝐴 𝑐𝑁 + 𝐴 𝛼 𝑐) or 𝑄 = (𝐴 𝑐𝑁 + 𝐴 𝑐) (Group) 2 𝑢 𝑝 𝑐 𝑠 𝑢 𝑔𝑝 𝑐 𝑔𝑠 36. 𝑆 𝐵 𝐵 +0.3 = 𝑆 ( ) (settlement of footing based on plate 65. 𝑝 = 𝑘 𝜎̅ − 2𝑐√𝑘 + 𝑢 𝑓 𝑝 𝐵𝑝 𝐵𝑓+0.3 𝑎 𝑎 𝑎 settlement) 66. 𝑝𝑝 = 𝑘𝑝𝜎̅ + 2𝑐√𝑘𝑝 + 𝑢 67. 𝑘𝑎 = 1−sin ∅ and 𝑘 1+sin ∅ = 1+sin ∅ 1−sin ∅ 68. 𝐻𝑐 = 2𝑐 𝛾√𝐾𝑎 and unsupported vertical cut = 2𝐻𝑐 71. 𝑘 = cos 𝛽−√cos2 𝛽−cos2 ∅ and 𝑃 = cos 𝛽+√cos 𝛽−cos ∅ 𝑘𝑎𝛾ℎ2 cos 𝛽 2 69. 𝑘 sin2(𝛽+∅) 𝑎 2 sin2 𝛽 sin(𝛽−𝛿) (1+√ sin(∅+𝛿) sin(∅−𝑖)) (Inclined backfill) cos 𝛽+√cos2 𝛽−cos2 ∅ 𝑘 𝛾ℎ2 sin(𝛽−𝛿) sin(𝛽+𝑖) 72. 𝑘 = and 𝑃 = 𝑝 cos 𝛽 (Coulomb’s active ) sin2(𝛽−∅) 70. 𝑘𝑝 = 2 𝑝 cos 𝛽−√cos2 𝛽−cos2 ∅ 𝑝 2 (Inclined backfill) 73. 𝑁 = 15 + 1 (𝑁 − 15) 𝑤ℎ𝑒𝑛 𝑁 > 15 𝑎𝑛𝑑 𝑁 = 𝑁 𝑤ℎ𝑒𝑛 𝑁 ≤

sin2 𝛽 sin(𝛽+𝛿) (1−√ sin(∅+𝛿) sin(∅+𝑖))
sin(𝛽+𝛿) sin(𝛽+𝑖)

𝑐 2 𝑐

(Coulomb’s passive )

15 (dilatancy)

74. 𝑖𝑐

= 𝐺−1 1+𝑒

(Quick sand condition)

Hydrology

1. A tropical cyclone is a zone of low pressure with anticlockwise winds in the northern hemisphere.
2. Anticyclones cause clockwise wind circulations in the northern hemisphere.

11. 𝑓𝑝 = 𝑓𝑐 + (𝑓0 − 𝑓𝑐)𝑒−𝐾ℎ𝑡 (Horton’s equation)
12. ∅ 𝑖𝑛𝑑𝑒𝑥: It is the average rainfall above which the rainfall volume is equal to the runoff volume.
13. 𝑊 𝑖𝑛𝑑𝑒𝑥: 𝑊 = 𝑃−𝑅−𝐼𝑎

2 𝑚 ̅ 2

𝑡𝑒

3. 𝑁 = (𝐶𝑣)

, 𝐶

= 100×𝜎𝑚−1 and 𝜎

= √∑1 (𝑃𝑖−𝑃)

14. 𝑣̅ = 𝑣

and 𝑣̅ = 𝑣0.2+𝑣0.8

𝗌 𝑣

𝑃̅

𝑚−1

𝑚−1

0.6 2

4. 𝑃𝑥 = 1 [𝑃1 + 𝑃2 + ⋯ + 𝑃𝑚 ] (Normal ratio method)

15. 𝑄𝑡𝐶1 + 𝑄𝐶0 = (𝑄 + 𝑄𝑡)𝐶2 (Dilution technique)

𝑁𝑥 𝑀 𝑁1 𝑁2

𝑁𝑚

16. 𝑄 = 2.778 𝐴 , (Equilibrium discharge) A in 𝑘𝑚2 and D in h. 𝑄 in

5. 𝑃̅ = 𝑃1𝐴1+𝑃2𝐴2+⋯+𝑃𝑚𝐴𝑚
𝑃1+𝑃2+⋯+𝑃𝑚

(Thiessen-mean method)

𝑠
𝑚3/𝑠
17. 𝜎𝑛−1 (𝑦

𝐷

− 𝑦

) = 𝑥

− 𝑥

and 𝑦

𝑠

= − (𝑙𝑛. ln 𝑇 ) (Gumbels)

𝑃1+𝑃2

𝑃2+𝑃3

𝑃𝑛−1+𝑃𝑛

𝑆𝑛

𝑇1

𝑇2

𝑇1

𝑇2 𝑇

𝑇−1

6. 𝑃̅ = 𝑎1(

2 )+𝑎2(

2 )+⋯+𝑎𝑛−1(
𝐴

)
2 (Isohyetal method)

𝑛
18. 𝑅𝑖𝑠𝑘, 𝑅 = 1 − 𝑞𝑛 = 1 − (1 − 𝑃)𝑛 = 1 − (1 − )

7. 𝑃𝑟,𝑛 = 𝑛𝐶𝑟𝑝 𝑞 and 𝑃1 = 1 − 𝑞
8. 75% dependable annual rainfall is annual rainfall with probability

19. 𝑄2 = 𝐶0𝐼2 + 𝐶1𝐼1 + 𝐶2𝑄1, 𝐶0 =
𝑘−𝑘𝑥−0.5 ∆𝑡

−𝑘𝑥+0.5 ∆𝑡

𝑘−𝑘𝑥+0.5 ∆𝑡

𝑇
, 𝐶1 =

𝑘𝑥+0.5 ∆𝑡

𝑘−𝑘𝑥+0.5 ∆𝑡

and

𝑃 = 0.75, i.e. 𝑇 = 𝑁+1 = 1
𝑚 0.75

𝐶2 = 𝑘−𝑘𝑥+0.5 ∆𝑡 , 𝐶1 + 𝐶2 + 𝐶3 = 1
20. 𝑆 + 𝑆 = 𝜂

9. The chemical used as evaporation inhibitor is cetyl alcohol.
10. Evapotranspiration can be measured by Lysimeters.
21. 𝐾 = 𝐾0 = 1 ln 𝐻1 (recuperation test)

𝑦 𝑟

𝑠 𝐴

𝑇𝑟

𝐻2

Fluid mechanics

1. 𝑟 = 𝜇.
𝑑𝑦
2. 𝜕𝜌 + 𝜕 (𝜌𝑣 ) + 𝜕 (𝜌𝑣 ) + 𝜕 (𝜌𝑣 ) = 0 (continuity equation)

26. 𝐺𝑀 = 𝐼 − 𝐵𝐺
𝑉
27. Q= 8 𝐶 . √2𝑔. tan 𝜃/2 𝐻5⁄2

𝜕𝑡 𝜕𝑥 𝑥 𝜕𝑦 𝑦 𝜕𝑧 𝑧

15 𝑑

3. + 𝜌 ∇. 𝑉 =0 (continuity equation)
𝐷𝑡
4. 𝐹 − 𝐹 = 𝑀2−𝑀1 = 𝑚𝑣2−𝑚𝑣1 = 𝜌𝑄(𝑣

− 𝑣 )

28. 𝑣 = √𝑔𝑥²
2𝑦

𝑎 𝑎 𝑠

1 2 𝑡 𝑡 2 1

29. 𝑄 = Cd 1 2 . √2gh and ℎ = 𝑥 ( 𝑚 − 1)

5. 𝐹 = 𝜌𝑎(𝑣 + 𝑢)[(𝑣 + 𝑢) − 𝑢] = 𝜌𝑎(𝑣 + 𝑢)𝑣 (Jet propulsion
moving with 𝑢 velocity)

√𝑎12−𝑎22
30. 𝑄 = 𝜓1 − 𝜓2

𝑠𝑓

𝑝 𝑣2

𝑝 𝑣2

31. = −𝑣 and = −𝑣

6. 1 + 1 + 𝑧1 = 2 + 2 + 𝑧2

𝜕𝑥

𝑥 𝜕𝑦 𝑦

𝜌𝑔

2𝑔

𝜌𝑔

2𝑔

𝜕𝜓

𝜕𝜓

𝜕𝑐 𝜕𝑝 𝜕2𝑣 𝜕𝑝
7. = and 𝜇 =

32.

𝜕𝑥 = 𝑣𝑦 and 𝜕𝑦 = −𝑣𝑥

𝜕𝑦

𝜕𝑥

𝜕𝑦2

𝜕𝑥

𝜌𝑟𝑉𝑟𝐿𝑟

8. 𝑟 = − 𝜕𝑃 . 𝑟 and 𝑟 = 𝛾𝑤.ℎ𝐿 . 𝑟

33. (𝑅𝑒)𝑟 =

= 1
𝜇𝑟

𝜕𝑥 2

𝐿 2

34. (𝐹 )

= 𝑣𝑟

9. 𝑣 = 1 . (− 𝜕𝑝) . (𝑅2 − 𝑟2) = 𝑣

𝑟 2

𝑟 𝑟

√𝑔𝑟𝐿𝑟

4𝜇

𝜕𝑥

𝑚𝑎𝑥. [1 − (𝑅) ]

𝜕𝑣

𝜕𝑣

𝜕𝑣

𝜕𝑣

35. 𝑎𝑥 = 𝑣𝑥 . 𝑥 + 𝑣𝑦 . 𝑥 + 𝑣𝑧 . 𝑥 + 𝑥

10. 𝑝 − 𝑝

= 32𝜇𝑉𝐿 = 128𝜇𝑄𝐿

𝜕𝑥

𝜕𝑦

𝜕𝑧

𝜕𝑡

1 2
64𝜇

𝐷2 64

𝜋𝐷4

36. 𝑎

= 𝑣 . 𝜕𝑣𝑦 + 𝑣

. 𝜕𝑣𝑦 + 𝑣 . 𝜕𝑣𝑦 + 𝜕𝑣𝑦

11. 𝑓 = =
𝜌𝑉𝐷 𝑅𝑒

𝑦 𝑥

𝜕𝑥

𝑦 𝜕𝑦

𝑧 𝜕𝑧

𝜕𝑡

𝑟 1⁄7

37. 𝑎

= 𝑣 . 𝜕𝑣𝑧 + 𝑣

. 𝜕𝑣𝑧 + 𝑣 . 𝜕𝑣𝑧 + 𝜕𝑣𝑧

12. 𝑣 = 𝑣𝑚𝑎𝑥. (1 − 𝑅)

(Turbulent)

𝑧 𝑥

𝜕𝑥

𝑦 𝜕𝑦

𝑧 𝜕𝑧

𝜕𝑡

13. ℎ

= 𝑓𝐿𝑣2

38. 𝜔 = 1 𝑐𝑢𝑟𝑙 𝑣 = 1 (∇ × 𝑣)

𝐿 2𝑔𝐷 2 2

14. 𝐿 = 𝐿1 + 𝐿2 + 𝐿3 (Compound pipe)
𝐷 𝐷 𝐷 𝐷
𝑝𝑎 𝑝𝑠 𝑓𝑙𝑣2 0.5𝑣2 𝑣2

𝑓𝐿𝑣2

1.5𝑣2

39. Vorticity = 2𝜔
40. Circulation = 𝑣𝑜𝑟𝑡𝑖𝑐𝑖𝑡𝑦 × 𝑎𝑟𝑒𝑎

15.

− ℎ = + +
𝛾 𝛾 2𝑔𝐷

+ and 𝐻 = +
2𝑔 2𝑔 2𝑔𝐷

(Siphon)
2𝑔

41. 𝐹 = 𝜌𝑎𝑣2

16. 𝛿

∗ = ∞ (1 − 𝑣) 𝑑𝑦
0 𝑉

42. Q

= Q [1 + cos θ] 𝑎𝑛𝑑 Q = Q [1 − cos θ] (θ is with plate)
2 2

17. 𝜃 =

∞ 𝑣 (1 − 𝑣) 𝑑𝑦

43. N

= N√Q , N

= N√P

∫0 𝑉 𝑉

s H3/4

s H5/4

∞ 𝑣

𝑣2

𝑄2 𝐴3
44. =

18. 𝛿𝐸 = ∫0 𝑉 (1 − 𝑉2) 𝑑𝑦

𝑔 𝑇

𝛿 5
19. Blassius boundary layer thickness

45. 𝐹 = 𝑣

𝛿∗

𝑥
1.729

√𝑅𝑒𝑥

𝐴
𝑔.𝑇
2 2 2 2

20. Displacement thickness =

3 2𝑦1 𝑦2

𝑦1 +𝑦1𝑦2+𝑦2

𝑥 √𝑅𝑒𝑥

46. 𝑦𝑐 = 𝑦 +𝑦

and 𝐸 =

𝑦 +𝑦

0.664

1 2 1 2

21. Momentum thickness =

47. 𝑑𝑦 = 𝑠𝑜−𝑠𝑓

𝑥 √𝑅𝑒𝑥

𝑑𝑥

𝑄2𝑇

2 1− 3

22. 𝑐𝑑,𝑥

= 0.664 and 𝑟
√𝑅𝑒𝑥

= 𝑐𝑑,𝑥

𝜌𝑉 2

𝑔𝐴
48. 𝑃1+𝑀1 = 𝑃2 + 𝑀2 (specific force=pressure force+momentum per

23. Drag force= 𝐶 𝜌𝐴𝑉2

𝑎𝑛𝑑 𝐹 = 𝑟

= 𝐶 𝜌𝑉2, 𝐶

= 1.328

sec)

𝑑 2

𝐴 0

𝑑 2

𝑑 √𝑅𝑒 𝐿

𝑦 𝑦

2𝑞2

24. 𝛿′ = =
√𝑐𝑜/𝜌

11.6𝖯

𝑣∗

(Laminar sub layer)

49.

2 [1 + 2] =
𝑦1 𝑦1
(𝑦2−𝑦1)3

𝑔𝑦3

(sequent depths for rectangular channel)

25. ℎ̅ = x̅ + IG
AX̅

and ℎ̅ = 𝑥̅ + 𝐼𝐺 . 𝑠𝑖𝑛2𝜃
𝐴𝑥̅

50. 𝐸 =

4𝑦1𝑦2

(Energy loss in jump)

Irrigation Engineering

𝑦 𝑄
1.

𝐷 𝑑+𝐷

𝑡 = 𝑓 log𝑒 (𝑄−𝑓𝐴)
𝑄

30. 𝐶 = 19 √
𝑏

[ ], 𝑑 = 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑝𝑖𝑙𝑒 𝑎𝑛𝑑 𝐷 =
𝑏

2. 𝐴𝑚𝑎𝑥 = 𝑓

𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔 𝑝𝑖𝑙𝑒 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡.

𝑁𝑎+

𝐻 1

1+√1+𝛼2 𝑏

3. 𝑆𝐴𝑅 =

√𝐶𝑎+++𝑀𝑔++

31. 𝐺𝐸 = 𝑑 𝜋√𝜆 , 𝜆 =

and 𝛼 =
2 𝑑

2 1 −1

𝜆−2

1 −1

𝜆−1

𝐵
4. ∆= 8.64

32. ∅𝐷 = 𝜋 cos

( 𝜆 ) and ∅𝐸 = 𝜋 cos ( 𝜆 )

𝐷 1

−1 𝜆2+1

1 −1

𝜆2

5. 𝐴 = 𝑄𝐷

33. ∅𝐶 = 𝜋 cos

( 𝜆 ) , ∅𝐷 = 𝜋 cos

(𝜆 ) and ∅𝐸 =

𝑊𝑎𝑡𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

1 𝜆2−1

√1+𝛼2+√1+𝛼2

√1+𝛼2−√1+𝛼2

6. 𝜂𝑐 =

cos−1 (

) , 𝜆1 = 1 2 and 𝜆2 = 1 2

7. 𝜂𝑎

𝑊𝑎𝑡𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑
= 𝑊𝑎𝑡𝑒𝑟 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑟𝑜𝑜𝑡 𝑧𝑜𝑛𝑒
𝑊𝑎𝑡𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝜋
, 𝛼1

𝜆1
= 𝑏1 𝑎𝑛𝑑 𝛼
𝑑

2 2
= 𝑏2
𝑑

8. 𝜂𝑠
9.

= 𝑊𝑎𝑡𝑒𝑟 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑟𝑜𝑜𝑡 𝑧𝑜𝑛𝑒
𝑊𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑒𝑑 𝑖𝑛 𝑟𝑜𝑜𝑡 𝑧𝑜𝑛𝑒
𝑑

34. Non-modular modules: Drowned pipe outlet, masonry
sluice and wooden shoots.

𝜂𝑑 = 1 − 𝐷, 𝐷 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑒𝑝𝑡ℎ𝑠 and
𝑑 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠
10. 𝐶𝐼𝑅 = 𝐶𝑢 − 𝑅𝑒
11. 𝑁𝐼𝑅 = 𝐶𝐼𝑅 + 𝑤𝑎𝑡𝑒𝑟 𝑙𝑜𝑠𝑡 𝑎𝑠 𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛
𝑘𝑝

35. Semi modules or flexible modules: Pipe outlet, venturi flume or Kennedy’, open flume and orifice semi module.
36. Rigid modules: Gibb’s module, Kanna’s rigid module and
foote module.

12. 𝐶𝑢 = 40 (1.8𝑡 + 32)
13. 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =

𝛾𝑑 𝑑(𝐹 − 𝑂𝑀𝐶)

37. Flexibility 𝐹 = 𝑑𝑞/𝑞 = 𝑚
𝑑𝑄/𝑄 𝑛

. 𝑦
𝐻

, 𝑞 =discharge in outlet and

14. 𝑟𝑜 = 𝛾𝑤𝑅𝑆

𝛾𝑤

𝑄 = discharge in channel, 𝑚 =outlet index and
𝑛 =channel index. 𝐻 =working head of outlet and 𝑦 =

15. 𝑛 =

1 𝑑6, 𝑑 is in meters
24

depth of water in channel.

16. 𝑣 = 0.55 𝑚 𝑦0.64

38. Proportionality: 𝐹 = 1 𝑎𝑛𝑑 𝑚 = 𝐻

0
1+(23+0.00155)

𝑛 𝑦
𝐻

17. 𝑣 = [ 𝑛 𝑆 ] 𝑅𝑆
1+(23+0.00155) 𝑛

39. Setting =
𝑦

1
18. 𝑣 = (𝑄𝑓2 6

𝑆 √𝑅

40.

𝑚 >
𝑛

𝐻
, hyper proportional outlet.
𝑦

140

𝑚 𝐻
41. < , sub proportional outlet.

5 𝑣2

𝑛 𝑦

19. 𝑅 = ( )
2 𝑓

42. Sensitivity, 𝑆 = 𝑑𝑞/𝑞 = 𝑛 𝑑𝑞/𝑞 = 𝑛 𝐹

20. 𝑃 = 4.75√𝑄

𝑑𝑦/𝑦

𝑑𝑄/𝑄

5

21. 𝑆 = 𝑓3 3340𝑄6

1
𝑞2 3

43. Aqueduct: Canal over drainage with clear gap.
44. Syphon Aqueduct: Canal over drainage with syphonic action.
45. Super passage: Drain over canal with clear gap.

22. 𝐷𝑠 = 1.35 ( 𝑓 )
2 1 46. Canal Syphon: Drain over canal with syphonic action.

23. 𝑣 = 10.8𝑅3𝑆3

47. Principal stress in dam

24. 𝐴 = 𝑦2(𝜃 + cot 𝜃), 𝑃 = 2𝑦(𝜃 + cot 𝜃) for Lined

𝜎 = 𝑝𝑣

sec2 𝛼 − 𝑝′ tan2 𝛼

Triangular section.
25. 𝐴 = 𝐵𝑦 + 𝑦2(𝜃 + cot 𝜃), 𝑃 = 𝐵 + 2𝑦(𝜃 + cot 𝜃) for Lined Trapezoidal section.
26. Launching apron scour depth,
1
𝑄
𝐷 = 𝑥𝑅 − 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ 𝑎𝑏𝑜𝑣𝑒 𝑏𝑒𝑑, 𝑅 = 0.47 ( )
𝑓

where 𝑝𝑣 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑝′ = water pressure of tail water and
𝛼 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑑𝑎𝑚 𝑓𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
48. 𝐵 = 𝐻
√𝑆𝑐−𝐶

27. Length of launching apron = √5 𝐷

49. 𝐻 = 𝑓
𝛾𝑤(𝑆𝑐−𝐶+1)

and 𝐻𝑚𝑎𝑥

= 𝑓
𝛾𝑤(𝑆𝑐+1)

28. 𝑡 = ℎ𝘍
𝐺

, where

1.85

0.85

ℎ′ = 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝐻𝐺𝐿 𝑎𝑏𝑜𝑣𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟

50. 𝑥

= 2 𝐻𝑑 𝑦

29. 𝑡 =

𝐺−1

, where

ℎ = 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝐻𝐺𝐿 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟

Environmental Engineering

1. 𝑃𝑛 = 𝑃0 + 𝑛𝑥̅ , where 𝑥̅ =average of population increase (Arithmetic increase method)

23. PH range for alum: 6.5 to 8.3.
24. 𝐻𝑂𝐶𝑙 is most destructive disinfectant.

2. 𝑃𝑛 = 𝑃0 (1 +

𝑟 𝑛
)
100

1

, where 𝑟 = (𝑟1𝑟2 … 𝑟𝑡 )𝑡 (Geometric increase

25. Quick lime required in softening =Carbonate hardness in 𝑚𝑔/𝑙 as
𝐶𝑎𝐶𝑂 × 56/100 + 𝑀𝑔++ × 56 +𝐶𝑂 × 56

method)

3 24

2 44

3. 𝑃𝑛 = 𝑃0 + 𝑛𝑥̅ + 2 𝑦̅ , where 𝑦̅ =average of incremental

26. Soda required in softening =Non-carbonate hardness in 𝑚𝑔/𝑙 as
𝐶𝑎𝐶𝑂 × 106/100

increase

3
27. 𝑌𝑡 = 𝐿(1 − 10−𝑘𝐷𝑡)

4. Carbonate hardness=Total hardness or Alkalinity whichever is

28. 𝑘

𝐷,𝑇

= 𝑘

𝐷,20

× (1.047)𝑇−20

lesser.
5. Non-carbonate hardness = Total hardness – carbonate hardness
6. Total hardness = 𝐶𝑎++ in mg/l × 50 +𝑀𝑔++ in mg/l × 50 +𝐴𝑙3+ in

29. 𝑆 = 1 − (0.794)𝑡20 and 𝑆 = 1 − (0.630)𝑡37
30. 𝜂% = 100
1+0.0044√u

20 12
50

where 𝑢 =organic loading kg/ha-m/day

mg/l ×

100

1+R⁄I

9
7. Akalinity = 𝐶𝑂−− in mg/l × 50 + 𝐻𝐶𝑂− in mg/l × 50 + 𝑂𝐻− in

31. 𝜂% = 1+0.0044√u/F where 𝐹 = (1+0.1R⁄I)2

3 30 3 61

32. HRT = V = volume of Aeration tank

mg/l × 50

Q Rate of sewage flow.

17
8. Ammonia nitrogen and organic nitrogen is called Kjedahl nitrogen.
9. Colour: 5 Hazen units (max), PH: 6.5-8.5, Turbidity: 1 NTU (max), TDS: 500 mg/l (max), Chloride: 250 mg/l (max), Sulphate: 200 mg/l

33. Volumetric BOD loading = organic loading =
Mass of BOD applied per day to Aeration tank = QY0 volume of aeration tank. V
34. F = Q Yo

M V Xt

(max), Nitrate: 45 mg/l (max), fluoride : 1mg/l (max), Total alkalinity: 200 mg/l (max), Total hardness: 200 mg/l (max), Magnesium: 30 mg/l (max), Calcium: 75 mg/l (max), Zinc: 5 mg/l

35. 𝑀𝐶𝑅𝑇 = V.Xt = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 Qw.XR+(Q−Qw)XE. 𝐵𝑖𝑜 𝑚𝑎𝑠𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑝𝑒𝑟 𝑑𝑎𝑦
36. Sludge volume index (SVI) = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑙𝑢𝑑𝑔𝑒 𝑠𝑒𝑡𝑡𝑙𝑒𝑑 𝑖𝑛 30 𝑚𝑖𝑛 𝑖𝑛 𝑚𝑙
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑙𝑢𝑑𝑔𝑒 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑔𝑚

(max), Iron: 0.3 mg/l (max), Free residual chlorine: 0.2 mg/l (min).

37. QR Q

= Xt
XR−X

Xt 106
−X

10. Toxic substances: Cadmium, Cyanide, lead, Mercury, Nickel,
Arsenic, chromium.

t
38. C = VsQs + VRQR
Qs + QR

SvI t

11. E-coli shall not be detectable in any 100 ml sample of drinking
water.
12. Standard sample of MPN: 10ml, 1 ml and 0.1 ml

39. ( 𝐿0 )𝑓−1 = {1 − (𝑓 − 1) 𝐷0} 𝑓
𝐷𝑐𝑓 𝐿0
40. 𝑡 = 1 . 𝑙𝑜𝑔 [{1 − (𝑓 − 1) 𝐷0} 𝑓]

𝑐 𝑘𝑟−𝑘𝑑

𝐿0

13. MPN/100 ml, by Thomas
= 100× 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑢𝑏𝑒𝑠

41. 𝐷 = 𝐿0 (10−𝑘𝐷𝑡 − 10−𝑘𝑅𝑡) + 𝐷 10−𝑘𝑅𝑡
𝑓−1

√𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑢𝑏𝑒𝑠×𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
14. 𝑣 = 𝑔 (𝐺 − 1) 𝑑2

42. Primary pollutants: CO, 𝑆𝑂2, 𝑁𝑜𝑥, hydrocarbons and particulate
matter are primary air pollutants.

𝑠 18 𝖯

15. Percentage particle removal: 𝑣𝑠 × 100 (If 𝑣 < 𝑣 )

43. Secondary pollutants: Ozone, PAN (Peroxy acetyl nitrate),

𝑣0

𝑠 0

photochemical 𝑆mog, Aerosols and mists.

16. Chemical used in coagulation: Alum (Aluminium sulphate),
Copperas (Ferrous sulphate), Chlorinated copperas, Sodium

44. 𝐸𝐿𝑅 < 𝐴𝐿𝑅 : Sub adiabatic and stable. 45. 𝐸𝐿𝑅 > 𝐴𝐿𝑅 : Super adiabatic and unstable

aluminates.
17. Al2(SO4)3 18H2O + 3 Ca(HCO3)2 →
3CaSO +2Al(OH) +6CO +18H O

46. 𝐿𝑝

=20 log

𝑃𝑟𝑚𝑠
10 𝑃𝑜
𝑛

𝐿𝑖

where 𝑃𝑜 = 20 𝜇𝑃𝑎

4 3 2 2
18. Alkalinity requirement = 300 𝑚𝑔/𝑙 as 𝐶𝑎𝐶𝑂

per 1𝑚𝑔/𝑙 of Alum

47. 𝐿𝑒𝑞=10log ∑𝑖=1 1010 × 𝑡𝑖
48. Addition of sound levels:

666 3

19. Permanent hardness due to alum = 408 𝑚𝑔/𝑙 as 𝐶𝑎𝐶𝑂

per

𝐿 = 10 log

𝐿1 𝐿2
[10 + 10

𝐿𝑛

666 3

𝑝 10 10

10 + ⋯ + 1010]

1𝑚𝑔/𝑙 of Alum

49. Averaging of Sound Pressure Levels:

20. Sludge production = 156 𝑚𝑔/𝑙 as 𝐶𝑎𝐶𝑂 per 1𝑚𝑔/𝑙 of Alum

1 𝐿1

𝐿2

𝐿𝑛

666
21. 𝐶𝑂 release = 264 𝑚𝑔 as 𝐶𝑎𝐶𝑂
666 𝑙

3
per 1𝑚𝑔/𝑙 of Alum

̅𝐿̅𝑝̅ = 20 log10 { (1020 + 1020 + ⋯ + 1020 )}
50. 𝐿 = 𝐿 – 20 𝑙𝑜𝑔 (𝑟2)

1

22. 𝐺 = ( ) where P is in Watts
𝜇𝑉

2 1 10

𝑟1

Transportation Engineering

2𝑥2
1. 𝑦 = (parabolic camber)
𝑛𝑊

37. 𝐸𝑆𝑊𝐿: interpolate load for depth from line joining (𝑙𝑜𝑔𝑃, log 𝑧)
2

𝑣2
2. 𝑆𝑆𝐷 = 𝑣𝑡 +
2𝑔(𝑓±𝑛)

, 𝐼𝑆𝐷 = 2 × 𝑆𝑆𝐷

and (𝑙𝑜𝑔2𝑃, log 2𝑠).
1

3. 𝑂𝑆𝐷 = 𝑑1

+ 𝑑2

+ 𝑑3

, 𝑑1

= 𝑣𝑏

𝑡, 𝑑2

= 2𝑠 + 𝑣𝑏𝑇 , 𝑑3

= 𝑣𝑇 ,

𝐸ℎ3 4
38. Radius of relative stiffness 𝑙 = [ ]
12𝑘 1−𝜇 )

𝑇 = √4𝑠/𝑎
𝑣2 𝑛𝑙2 𝑉
4. = 𝑒 + 𝑓 , 𝑊 = +

( 𝑘𝑔
39. 𝑘 = 𝑐𝑚 (modulus of subgrade reaction)
0.125 𝑐𝑚

𝑅𝑔

𝑒 2𝑅

9.5√𝑅

40. 𝑘 = 𝐸

(𝑎 is rigid plate radius)

5. 𝐿𝑠

= 𝑣3 (comfort condition)
𝐶𝑅

1.18 𝑎
41. 𝑘 = 𝐸

(𝑎 is flexible plate radius)

6. 𝐿𝑠 = 𝑒𝑁(𝑊 + 𝑊𝑒) (rotated about inner edge)

1.5 𝑎

𝑉2

𝑉2

42. 𝑘1𝑎1 = 𝑘2𝑎2

7. 𝐿𝑠 = 2.7 𝑅 for plain and rolling terrain, 𝐿𝑠 = 𝑅 for steep and
mountainous terrain.
8. IRC recommends Spiral as transition curve.

43. 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (below 7 𝑘𝑔/𝑐𝑚2 contact
𝑡𝑦𝑟𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
pressure is more)
𝛿

2
9. 𝑆 = 𝑠

44. 𝐿𝛼𝑡 =

(expansion joint)
2

24𝑅

45. 𝐿𝑐 𝑏ℎ𝛾 𝑓 = 𝑆 𝑏ℎ

10. 𝑚 = 𝑅 (1 − cos ), 𝜃 = 𝑆/𝑅 (single lane, 𝐿 > 𝑆)

2 𝑐 𝑐

2 46. 𝑏ℎ𝛾𝑐𝑓 = 𝐴𝑠𝑡 𝑆𝑠 (tie bar area of steel per meter)

11. 𝑚 = 𝑅 (1 − cos ) + 𝑆−𝐿 sin , 𝜃 = 𝐿 (Single lane, 𝐿 < 𝑆) 𝐿 𝜋∅2 2 2 2 𝑅 47. 2 𝜋∅𝑟𝑏𝑑 = 4 𝑆𝑠 (length of tie bar) 12. Curve resistance = 𝑇(1 − cos 𝛼) (𝜆𝑡)𝑥𝑒−𝜆𝑡 13. Grade compensation = 30+𝑅 or 75 whichever is less 48. 𝑃(𝑥) = 𝑥! (Poisson distribution) 14. 𝐿 = 𝑁𝑠2 (√2ℎ+√2𝐻) 𝑅 𝑅 when 𝐿 > 𝑠 (Summit curve for SSD), ℎ =

49. 𝑃(ℎ ≥ 𝑡) = 𝑒−𝜆𝑡
50. 𝑘 = 𝑘 (1 − 𝑣 ) and 𝑣 = 𝑣 (1 − 𝑘 )

0.15 𝑎𝑛𝑑 𝐻 = 1.2

𝑗 𝑣𝑓

𝑓
1000

𝑘𝑗

15. 𝐿 = 2𝑠 −

2
(√2ℎ+√2𝐻) when 𝐿 < 𝑠 (Summit curve for SSD), 𝑁 51. 𝑞 = 𝑘𝑣 and 𝑘 = 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 52. 𝑃𝐻𝐹 = 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 𝑓𝑙𝑜𝑤 or 𝑃𝐻𝐹 = 30𝑡ℎ ℎ𝑜𝑢𝑟𝑙𝑦 𝑣𝑜𝑙𝑢𝑚𝑒 ℎ = 0.15 𝑎𝑛𝑑 𝐻 = 1.2 𝑁𝑠2 4 ×𝑝𝑒𝑎𝑘 15 𝑚𝑖𝑛 𝑓𝑙𝑜𝑤 53. 𝑇𝑖𝑚𝑒 𝑚𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 = 𝑣1+𝑣2+⋯+𝑣𝑛 𝐴𝐴𝐷𝑇 16. 𝐿 = (√2𝐻+√2𝐻) 2 when 𝐿 > 𝑠 (Summit curve for OSD), 𝐻 = 1.2

𝑛
54. 𝑆𝑝𝑎𝑐𝑒 𝑚𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 = 𝑑

17. 𝐿 = 2𝑠 −

2
(√2𝐻+√2𝐻)
𝑁

, 𝐿 < 𝑠 (Summit curve for OSD), 𝐻 = 1.2 55. 𝑞 = 𝑛𝑎+𝑛𝑦, 𝑡̅ = 𝑡 − 𝑛𝑦 𝑡1+𝑡2+⋯+𝑡𝑛 𝑛 𝑁𝑠2 𝑡 +𝑡 𝑤 𝑞 18. 𝐿 = when 𝐿 > 𝑠 (valley curve), ℎ = 0.75 𝑎𝑛𝑑 𝛼 = 1°

𝑎 𝑤

2ℎ+2𝑠 tan 𝛼
2ℎ+2𝑠 tan 𝛼

56. Safe speed limit is 85th percentile speed

19. 𝐿 = 2𝑠 −
1
3

, 𝐿 < 𝑠 (valley curve), ℎ = 0.75 𝑎𝑛𝑑 𝛼 = 1°
𝑁

57. Geometric design is based on 98th percentile speed.
58. Road side facilities are based on 30th highest hourly volume.

20. 𝐿 = 2 (𝑁𝑣 )2 (valley curve comfort condition)
𝐶
21. 𝐶 = 80
75+𝑉

59. 𝐶0

= 1.5𝐿+5
1−𝑌0

(1+𝑒 )(

𝑝)

22. 𝐹𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =

60. 𝑄 = 280𝑤

𝑤 1−3
( 𝑤

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑎𝑘𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑡ℎ𝑖𝑛𝑛𝑒𝑟 𝑡ℎ𝑎𝑛 0.6 𝑑𝑚 × 100
𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
23. 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑎𝑘𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑙𝑜𝑛𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 1.8 𝑑𝑚 × 100

1+ 𝑙 )
61. 𝑇 = 𝑇 + 𝑇 𝑚−𝑇𝑎
3
62. 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 7 % 𝑓𝑜𝑟 300 𝑚

6.5

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
100(𝑊
24. Angularity number= 67 − 𝐺
𝐶
cylinder, W is weight of aggregate packed in the cylinder.
25. Penetration test unit is 1/10th mm. Weight used 100 grams. Temperature 25℃.

63. 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑎𝑖𝑟𝑝𝑜𝑟𝑡, 𝑇𝑠 = 15 − 1000 ℎ
64. Temperature correction = 1% 𝑝𝑒𝑟 1℃ 𝑟𝑖𝑠𝑒 𝑜𝑓 𝑇𝑟 𝑎𝑏𝑜𝑣𝑒 𝑇𝑠
65. Gradient correction = 20% 𝑝𝑒𝑟 1% 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡.
66. 𝑇𝑢𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑢𝑠 𝑅 = 𝑉2
125𝑓
67. 𝑇𝑢𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑢𝑠 𝑅 = 0.388𝑊2 where 𝑠 = 6 + 𝑡𝑟𝑒𝑎𝑑

𝑊1+𝑊2+𝑊3
𝑎 𝑊1 𝑊2 𝑊3

𝑊𝑎+𝑊𝑏
𝑡 𝑊 𝑊

𝑇−𝑆 2
2

+ + 𝑎+ 𝑏

68. Turning radius for subsonic aircraft is 120 m and for supersonic it

𝐺1

𝐺2

𝐺3

𝐺𝑎

𝐺𝑏

27. 𝐺𝑚

= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑜𝑢𝑙𝑑
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑜𝑢𝑙𝑑

is 180 m

28. 𝑣

= 𝐺𝑡−𝐺𝑚

, 𝑣

= 𝑊𝑏 × 𝐺𝑚

and 𝑉𝑀𝐴 = 𝑣

+ 𝑣

69. Grade compensation for BG is 0.04%, for MG is 0.03% and for NG

𝑎 𝐺𝑡

𝑏 𝑊𝑚

𝐺𝑏

𝑎 𝑏

is 0.02% per degree of curve.

29. 𝑉𝐹𝐵 = 𝑣𝑏
𝑉𝑀𝐴
30. Flow value units 1/4th mm

70. 𝐷 = 1720
𝑅

𝑐2

(1+𝑟)𝑛−1
31. 𝑁 = 365𝐴 [
𝑛

] 𝑉𝐷𝐹 × 𝐿𝐷𝐹 and 𝐴 = 𝑃(1 + 𝑟)𝑥

71. 𝑉𝑒𝑟𝑠𝑖𝑛𝑒 𝑜𝑓 𝑐𝑢𝑟𝑣𝑒 =
8𝑅
72. 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑐𝑎𝑛𝑡 = 𝑉2

× 𝐺

32. 𝐿𝐷𝐹 = 0.75 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑙𝑎𝑛𝑒𝑠 𝑎𝑛𝑑 0.4 𝑓𝑜𝑟 𝑓𝑜𝑢𝑟 𝑙𝑎𝑛𝑒 (single
carriageway)
33. LDF=0.75 for two lanes and 0.60 for three lane and 0.45 for four lane (dual carriageway)

127𝑅
73. Theoretical cant = 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑐𝑎𝑛𝑡 + 𝑐𝑎𝑛𝑡 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
74. Widening of gauge in cm, 𝑑 = 13(𝐵+𝐿)2 where B is wheel base in
𝑅

m, lap of flange in m, 𝐿 = 0.02√ℎ2 + 𝐷ℎ , h is depth of wheel

34. 𝑉𝐷𝐹 = (

𝑃 4
) , where P is in kN
80

flange below rail top level, D dia of wheel in cm.
𝑣3

35. 𝐶𝐵𝑅 𝑎𝑡 2.5 𝑚𝑚 =

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛 𝑘𝑔/𝑐𝑚2 70

= 𝑙𝑜𝑎𝑑 𝑖𝑛 𝑘𝑔 1370

75. 𝐿𝑠 = 3.28 𝑅
𝑥3

(Transition curve)

36. 𝐶𝐵𝑅 𝑎𝑡 5 𝑚𝑚 =

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛 𝑘𝑔/𝑐𝑚2

= 𝑙𝑜𝑎𝑑 𝑖𝑛 𝑘𝑔

76. 𝑦 =

6𝐿𝑅

(Transition curve)

105

2055

77. Usually adopted transition curve for railways is cubic parabola.

[PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision

Preview
You can see the file preview from below.
Download Now
Click "Download Now" button to download the file
ReferPDF 64

FAQ's - [PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision

You can download the Civil Engineering Formulas Collection Study Material on www.ReferPDF.com
You can get the Civil Engineering Formulas Collection Study Material in PDF format freely on www.ReferPDF.com

Preparing for competitive exams in civil engineering can be a daunting task due to the extensive syllabus covering multiple topics. Competitive exams like GATE, ESE, SSC JE, RRB JE, and others require not only an in-depth understanding of various subjects but also quick recall of critical formulas. To make your preparation easier and more efficient, […]

This Civil Engineering Formulas Collection Study Material available in the PDF fromat and also downloadable.
This Study Materials belongs to Civil Engineering Course.

Related Study Materials

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

OR

Join With us to Get Regular Updates Alerts

Welcome,
New
Copyright © ReferPDF.Com
OR

Please, Login to Report the Contents

Report this Contents

"[PDF] Civil Engineering All Subjects Important Formulas Collection for Upcoming Competitive Exams Quick Revision"

Please enable JavaScript in your browser to complete this form.
=

If you are the copyright owner of this document and want to report it, please visit the copyright infringement notice page to submit a report.

Join with us to get Email Update Alerts

Subscribe to ReferPDF.Com via Email

Enter your email address to subscribe ReferPDF.Com and receive newly update notifications regularly by email.

Kindly Note: After pressing subscribe button, Check your Email Inbox & Click the Confirmation Link for Subscription Verification.